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Overview

° Hexadecimal numbers
• Related to binary and octal numbers

° Conversion between hexadecimal, octal and binary

° Value ranges of numbers

° Representing positive and negative numbers

° Creating the complement of a number
• Make a positive number negative (and vice versa)

° Why binary?



Understanding Binary Numbers

° Binary numbers are made of binary digits (bits): 
• 0 and 1

° How many items does an binary number represent?
• (1011)2 = 1x23 + 0x22 + 1x21 + 1x20 = (11)10 

° What about fractions?
• (110.10)2 = 1x22 + 1x21 + 0x20 + 1x2-1 + 0x2-2

° Groups of eight bits are called a byte 
• (11001001) 2

° Groups of four bits are called a nibble.
•  (1101) 2



Understanding Hexadecimal Numbers

° Hexadecimal numbers are made of 16 digits: 
• (0,1,2,3,4,5,6,7,8,9,A, B, C, D, E, F)

° How many items does an hex number represent?
• (3A9F)16 = 3x163 + 10x162 + 9x161 + 15x160 = 1499910 

° What about fractions?
• (2D3.5)16 = 2x162 + 13x161 + 3x160 + 5x16-1 = 723.312510

° Note that each hexadecimal digit can be represented 
with four bits.
• (1110) 2 = (E)16

° Groups of four bits are called a nibble.
•  (1110) 2



Putting It All Together

° Binary, octal, and 
hexadecimal similar

° Easy to build circuits to 
operate on these 
representations

° Possible to convert 
between the three 
formats



Converting Between Base 16 and Base 2

° Conversion is easy!

 Determine 4-bit value for each hex digit

° Note that there are 24 = 16 different values of four 
bits

° Easier to read and write in hexadecimal. 

° Representations are equivalent!

3A9F16 =  0011  1010  1001  11112

3 A 9 F



Converting Between Base 16 and Base 8

1. Convert from Base 16 to Base 2

2. Regroup bits into groups of three starting from 
right

3. Ignore leading zeros

4. Each group of three bits forms an octal digit.

352378 =    011  101  010  011  1112

5 2 3 73

3A9F16 =  0011  1010  1001  11112

3 A 9 F



How To Represent Signed Numbers

• Plus and minus sign used for decimal 
numbers:    25 (or +25), -16, etc.

• For computers, desirable to represent 
everything as bits..

• Three types of signed binary number 
representations: signed magnitude, 1’s 
complement, 2’s complement.

• In each case: left-most bit indicates sign: 
positive (0) or negative (1).

Consider signed magnitude: 

000011002 = 1210

Sign bit Magnitude

100011002 =  -1210

Sign bit Magnitude



One’s Complement Representation

• The one’s complement of a binary number 
involves inverting all bits.

• 1’s comp of 00110011 is 11001100

• 1’s comp of 10101010 is 01010101

• For an n bit number N the 1’s complement is 
(2n-1) – N.

• Called diminished radix complement by Mano 
since 1’s complement for base (radix 2).

• To find negative of 1’s complement number 
take the 1’s complement.

000011002 = 1210

Sign bit Magnitude

111100112 =  -1210

Sign bit Magnitude



Two’s Complement Representation

• The two’s complement of a binary number 
involves inverting all bits and adding 1.

• 2’s comp of 00110011 is 11001101

• 2’s comp of 10101010 is 01010110

• For an n bit number N the 2’s complement is 
(2n-1) – N + 1.

• Called radix complement by Mano since 2’s 
complement for base (radix 2).

• To find negative of 2’s complement number 
take the 2’s complement.

000011002 = 1210

Sign bit Magnitude

111101002 =  -1210

Sign bit Magnitude



Two’s Complement Shortcuts

° Algorithm 1  – Simply complement each bit and 
then add 1 to the result.
• Finding the 2’s complement of (01100101)2 and of its 2’s 

complement…

     N   = 01100101 [N] = 10011011

   10011010              01100100

 +               1       +               1

---------------             ---------------

   10011011           01100101

° Algorithm 2 – Starting with the least significant bit, 
copy all of the bits up to and including the first 1 
bit and then complementing the remaining bits.
• N = 0 1 1 0 0 1 0 1

[N] = 1 0 0 1 1 0 1 1



Finite Number Representation

° Machines that use 2’s complement arithmetic can 
represent integers in the range

-2n-1 <= N <= 2n-1-1

where n is the number of bits available for 
representing N.  Note that 2n-1-1 = (011..11)2         and 
–2n-1 = (100..00)2

oFor 2’s complement more negative numbers than 
positive.

oFor 1’s complement two representations for zero.

oFor an n bit number in base (radix) z there are zn 

different unsigned values.

(0, 1, …zn-1)



1’s Complement Addition

° Using 1’s complement numbers, adding numbers 
is easy. 

° For example, suppose we wish to add +(1100)2 
and +(0001)2.  

° Let’s compute (12)10 + (1)10.
• (12)10  = +(1100)2     = 011002 in 1’s comp. 

• (1)10  =   +(0001)2 = 000012 in 1’s comp. 0 1 1 0 0 
+ 0 0 0 0 1
--------------
  0  0 1 1 0 1
             0
--------------
     0 1 1 0 1

Add carry

Final 
Result

Step 1:  Add binary numbers
Step 2: Add carry to low-order bit

Add



1’s Complement Subtraction

° Using 1’s complement numbers, subtracting 
numbers is also easy. 

° For example, suppose we wish to subtract 
+(0001)2 from +(1100)2.  

° Let’s compute (12)10 - (1)10.
• (12)10  = +(1100)2     = 011002 in 1’s comp. 

• (-1)10  =   -(0001)2 = 111102 in 1’s comp. 

0 1 1 0 0 
- 0 0 0 0 1
--------------

     0 1 1 0 0 
+ 1 1 1 1 0
--------------
  1  0 1 0 1 0
             1
--------------
     0 1 0 1 1

Add carry

Final 
Result

Step 1:  Take 1’s complement of 2nd operand
Step 2:  Add binary numbers
Step 3:  Add carry to low order bit 

1’s comp

Add



2’s Complement Addition

° Using 2’s complement numbers, adding numbers 
is easy. 

° For example, suppose we wish to add +(1100)2 
and +(0001)2.  

° Let’s compute (12)10 + (1)10.
• (12)10  = +(1100)2     = 011002 in 2’s comp. 

• (1)10  =   +(0001)2 = 000012 in 2’s comp. 0 1 1 0 0 
+ 0 0 0 0 1
--------------
  0  0 1 1 0 1
             

Final
Result

Step 1:  Add binary numbers
Step 2: Ignore carry bit

Add

Ignore



2’s Complement Subtraction

° Using 2’s complement numbers, follow steps for 
subtraction 

° For example, suppose we wish to subtract 
+(0001)2 from +(1100)2.  

° Let’s compute (12)10 - (1)10.
• (12)10  = +(1100)2     = 011002 in 2’s comp. 

• (-1)10  =   -(0001)2 = 111112 in 2’s comp. 

0 1 1 0 0 
- 0 0 0 0 1
--------------

     0 1 1 0 0 
+ 1 1 1 1 1
--------------
  1  0 1 0 1 1
             

Final 
Result

Step 1:  Take 2’s complement of 2nd operand
Step 2:  Add binary numbers
Step 3:  Ignore carry bit 

2’s comp

Add

Ignore
Carry



2’s Complement Subtraction: Example #2

° Let’s compute (13)10 – (5)10.
• (13)10  = +(1101)2 = (01101)2

• (-5)10  = -(0101)2 = (11011)2

° Adding these two 5-bit codes…

° Discarding the carry bit, the sign bit is seen to be 
zero, indicating a correct result.  Indeed, 

      (01000)2 = +(1000)2 = +(8)10.

0 1 1 0 1 
+ 1 1 0 1 1
--------------
  1 0 1 0 0 0 

carry



2’s Complement Subtraction: Example #3

° Let’s compute (5)10 – (12)10.
• (-12)10  = -(1100)2 = (10100)2

• (5)10  = +(0101)2 = (00101)2

° Adding these two 5-bit codes…

° Here, there is no carry bit and the sign bit is 1.  
This indicates a negative result, which is what we 
expect.  (11001)2 = -(7)10.

0 0 1 0 1 
+ 1 0 1 0 0
--------------
 1 1 0 0 1



Summary

° Binary numbers can also be represented in octal and 
hexadecimal 

° Easy to convert between binary, octal, and hexadecimal

° Signed numbers represented in signed magnitude, 1’s 
complement, and 2’s complement

° 2’s complement most important (only 1 representation 
for zero).

° Important to understand treatment of sign bit for 1’s 
and 2’s complement.
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